
Prompt Wrangling: On Replication and Generalization in Large
Language Models for PCG Levels

Arash Moradi Karkaj
New Jersey Institute of Technology

Newark, New Jersey, USA
am3493@njit.edu

Mark J. Nelson
American University
Washington D.C., USA
mnelson@american.edu

Ioannis Koutis
New Jersey Institute of Technology

Newark, New Jersey, USA
i.koutis@njit.edu

Amy K. Hoover
New Jersey Institute of Technology

Newark, New Jersey, USA
ahoover@njit.edu

ABSTRACT
The ChatGPT4PCG competition calls for participants to submit
inputs to ChatGPT or prompts that guide its output toward in-
structions to generate levels as sequences of Tetris-like block drops.
Prompts submitted to the competition are queried by ChatGPT to
generate levels that resemble letters of the English alphabet. Lev-
els are evaluated based on their similarity to the target letter and
physical stability in the game engine. This provides a quantitative
evaluation setting for prompt-based procedural content generation
(PCG), an approach that has been gaining popularity in PCG, as in
other areas of generative AI. This paper focuses on replicating and
generalizing the competition results. The replication experiments
in the paper first aim to test whether the number of responses
gathered from ChatGPT is sufficient to account for the stochasticity.
We requery the original prompt submissions and rerun the origi-
nal scripts from the competition, on different machines, about six
months after the competition. We find that results largely replicate,
except that two of the 15 submissions do much better in our repli-
cation, for reasons we can only partly determine. When it comes
to generalization, we notice that the top-performing prompt has
instructions for all 26 target levels hardcoded, which is at odds with
the PCGML goal of generating new, previously unseen content from
examples. We perform experiments in more restricted zero-shot
and few-shot prompting scenarios, and find that generalization
remains a challenge for current approaches.

CCS CONCEPTS
• Computing methodologies→ Natural language generation.

KEYWORDS
Procedural content generation (PCG), Large LanguageModels (LLMs),
Generalizability, Evaluating Generalization, Science Birds

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FDG 2024, May 21–24, 2024, Worcester, MA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0955-5/24/05.
https://doi.org/10.1145/3649921.3659853

ACM Reference Format:
Arash Moradi Karkaj, Mark J. Nelson, Ioannis Koutis, and Amy K. Hoover.
2024. Prompt Wrangling: On Replication and Generalization in Large Lan-
guage Models for PCG Levels. In Proceedings of the 19th International Con-
ference on the Foundations of Digital Games (FDG 2024), May 21–24, 2024,
Worcester, MA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3649921.3659853

1 INTRODUCTION
Given the recent success of large language models (LLMs) for gener-
ating natural language text [10], vision-language models for gener-
ating images [11, 12] and 3D meshes, audio-text models for generat-
ing audio [5], even disciplines like evolutionary computation [6, 7]
and optimization more broadly [21] are reconceptualizing existing
paradigms to include pre-trained generative models. Central to the
recent popularity of generative AI are the affordances provided
by prompting, where prompts are strings of natural language text
input to a generative model. By simply explaining to the model
in plain language what it should create, users are able to control
the characteristics of the content that they generate. While some
approaches to prompt-based procedural content generation (PCG)
exist [15], the ChatGPT4PCG competition [17] held at the 2023 IEEE
Conference on Games is the first approach to in prompt-generated
PCG to foreground the affordances provided by prompting.

The ChatGPT4PCG competition [17] calls for participants to
submit prompts to ChatGPT-3.5 that then responds with instruc-
tions to generate levels for the Science Birds physics-based game
environment. These instructions are a series of commands to drop
blocks at specific locations in the game, and ChatGPT-3.5 responses
become XML levels through the architecture provided by the com-
petition [1]. The goal is for a single prompt to generate levels that
in aggregate resemble all 26 letters in the English alphabet. A single
prompt generates levels that look like different letters through the
template imposed by the competition design. The object variable in
the prompt tells ChatGPT-3.5 which letter its instructions should
generate (i.e., the target letter). Prompts are evaluated based on the
performance of ten generated levels for each of the 26 letters in
the alphabet. Assuming that a prompt generates ten valid levels
per letter, it is evaluated on a total of 260 levels. The scores for the
prompts are based on their resemblance to the target English letters
and on their in-game physical stability. In a sense the competition

https://orcid.org/0000-0002-6791-4988
https://orcid.org/0000-0003-1882-8896
https://orcid.org/0000-0003-1535-3397
https://orcid.org/0000-0002-4661-8178
https://doi.org/10.1145/3649921.3659853
https://doi.org/10.1145/3649921.3659853
https://doi.org/10.1145/3649921.3659853

FDG 2024, May 21–24, 2024, Worcester, MA, USA Arash Moradi Karkaj, Mark J. Nelson, Ioannis Koutis, and Amy K. Hoover

(a) Step 1:
One-by-Three Block

(b) Step 2:
Three-by-One Block

(c) Step 3:
One-by-One Block

Figure 1: Three block drops.

empowers its participants to prompt-engineering to a level genera-
tor within the boundaries of parameterization imposed by the the
competition’s organizers [13, 19, 20].

Two sets of experiments are proposed. The replication experi-
ment investigates whether the original prompts achieve approxi-
mately the same scores six months after the competition. ChatGPT-
3.5 is closed source and it is unclear when changes are made that
may impact the generated levels. This experiment also examines
whether scores are impacted by increasing the number of levels
generated per letter to 100. The results of the replication experi-
ment show that ChatGPT-3.5 is changing over the time span of six
months, and that these small changes can significantly impact how
prompts score, whether ten or 100 levels are evaluated. While the
sample size is likely adequate for the competition, to make conclu-
sions about prompts submitted to the competition over the course
of years, it will be important to query LLMs with static weights.

The generalization experiment examines the ability of prompts
to generate levels it has not yet seen (i.e., that are not hard-coded in
the prompt). Prompts are modified to contain zero-shots or example
letters in the zero-shot setting or one-shot in the one-shot setting.
The prompts in the one-shot setting are tested per letter given that
prompts contain different example letters and some letters are more
difficult to generate than others. N-shot prompting is specified for a
small subset of prompts and example letters. The goal of this exper-
iment is to understand whether successful prompts are generalizing
or if it is the quality of their lookup tables that determines their
score. Results show that these modified prompts perform signifi-
cantly worse than their unmodified counterparts and prompts that
generalize well are not necessarily those that perform well in the
competition. These results suggest that generalizing with these new
level generators is an open problem to explore.

Given that results are likely replicable with a static LLM, the
generalization experiment in particular is motivated by the goal of
aligning this new prompt-based PCG paradigm with the body of
work related to procedural content generation through machine
learning (PCGML), which focuses on generalizing from input exam-
ples to new, unseen generated content [16]. Judging by the results,
it is worth looking beyond the original leaderboard for promising
prompting strategies.

2 THE CHATGPT4PCG COMPETITION
ChatGPT for Procedural Content Generation (ChatGPT4PCG) is
a new competition for generating game levels with LLMs. Level
generators assemble levels by giving a series of instructions for
where to drop differently shaped bricks. The physics simulation is

Prompt Len. Chars. Token Qualifies
AdrienTeam Pass Pass Pass Yes
albatross Pass Pass Pass Yes
Back to the future Pass Pass Pass Yes
BirdBirdBird Fail Pass Pass No
BirdsTeam Fail Pass Pass No
dereventsolve Pass Pass Pass Yes
For500 Pass Pass Pass Yes
hachi Pass Pass Pass Yes
Harry Single Group Pass Pass Pass Yes
Hope Pass Pass Pass Yes
JUSTIN Pass Pass Pass Yes
pixelArt Pass Fail Pass No
Prompt_Wranglers Pass Pass Pass Yes
Saltyfish1884 Pass Pass Pass Yes
Soda Pass Pass Pass Yes
Team Staciiaz Pass Pass Pass Yes
The Organizer Pass Pass Pass Yes
zeilde Pass Pass Pass Yes

Table 1: Qualification Conditions. Entries to the Chat-
GPT4PCG competition qualify by satisfying the following
contraints: 1) contain 900 words or fewer, 2) contain only the
types of characters permitted by the organizers, 3) contain an
object token [17]. Three of the 18 prompts were disqualified,
leaving 15 to be evaluated: ‘BirdBirdBird’ and ‘BirdsTeam’
exceed the maximum length, and ‘pixelart’ contains a forbid-
den character.

provided by Science Birds, a Unity-based environment for game
research (Science Birds also has other components, based on the
popular game Angry Birds, but only the physics engine is used in
this competition, not the bird-based gameplay) [3].

An example of building the letter ‘T’ is shown in Figure 1. The
generator first drops a one-by-three brick at 𝑥 = 9 (Figure 1a), then
drops a three-by-one brick at 𝑥 = 9 (Figure 1b), which stacks on
the previous brick. Generators drop these blocks through the drop
function ab_drop(block_type, position), where the first argument is
one of the three available block shapes, and the second argument is
the x-position of the drop. Besides the two bricks used to construct
this ‘T’ shape, the third brick available is a one-by-one square,
shown dropped next to the ‘T’ in (Figure 1c).

For participants, the challenge is to design a prompt template
of 900 or fewer words that contains enough domain-specific in-
formation for ChatGPT to generate (from that prompt) twenty-six
different levels, with each level resembling one of the twenty-six
capital letters of the English alphabet.

These submitted prompt templates must contain a variable called
<OBJECT>. This template variable is replaced by the actual letter to
be generated before sending the prompt to ChatGPT. Because its
default temperature is nonzero, ChatGPT often generates a different
set of level instructions for identical prompts. Therefore to evaluate
the submitted prompts, ChatGPT4PCG determines the quality of
prompts by generating and evaluating ten levels per letter for a
total of 260 levels per submitted prompt.

Prompt Wrangling: On Replication and Generalization in Large Language Models for PCG Levels FDG 2024, May 21–24, 2024, Worcester, MA, USA

Figure 2: Example of a Prompt-Generated Level for Target
Letter ’A.’ Levels are generated in XML and loaded into the
Unity game, Science Birds. The competition restricts level
generation such that differences between levels are the num-
ber, position, and types of bricks in the list of GameObjects.

2.1 Prompt Qualification
Before generating levels, prompts are first assessed for eligibility.
Any entry to the competition must conform to rules that restrict
the maximum length of the prompt and the types of characters
it contains [17]. Prompts must also contain the <OBJECT> token
somewhere. Table 1 shows the results of the length, character type,
and object token tests on the 18 entries 1 to the ChatGPT4PCG
competition. Qualifying requires that each prompt passes each test.
Note that while the score for the 𝑣1_𝑠𝑎𝑚𝑝𝑙𝑒 prompt is recorded in
the results available at https://chatgpt4pcg.github.io/2023/result, it
is not available for download.

2.2 Level Generation
After qualifying, a prompt is input to ChatGPT 𝑛 = 10 times per
target letter for all 26 letters. The <OBJECT> variable in the prompt
template is replaced with the specific target letter for each trial.
A total of 260 responses are therefore generated per submission.
An example ChatGPT response is shown in Figure 3a. The code
between the triple back-ticks in the response is then extracted into
an intermediate format, the code shown in Figure 3b. Although the
x-position of the block is determined by the generated-code, the
XML contains a y-value corresponding to where the block would
sit in the game environment shown in Science Birds in Figure 2.
If a level contains blocks that would exceed the width or height
restrictions of the game, the XML for that level is not generated.

2.3 Level Evaluation
Levels are evaluated through a custom interface in Unity and as-
signed scores through a complex weighting scheme described by
Taveekitworachai et al. [17]. The weighting is applied to the sta-
bility and similarity scores and is designed to assign high weights
1https://chatgpt4pcg.github.io/2023/files/prompts.zip

Task : Genera te the uppe r ca se Eng l i s h l e t t e r
'A ' .
```
ab_drop ( ' b31 ' , 2 )
ab_drop ( ' b13 ' , 1 )
ab_drop ( ' b13 ' , 3 )
ab_drop ( ' b31 ' , 2 )
ab_drop ( ' b13 ' , 1 )
ab_drop ( ' b13 ' , 3 )
```

(a) Example Level ’A’: ChatGPT Response

ab_drop (' b31 ' , 2)
ab_drop (' b13 ' , 1)
ab_drop (' b13 ' , 3)
ab_drop (' b31 ' , 2)
ab_drop (' b13 ' , 1)
ab_drop (' b13 ' , 3)

(b) Example Level ’A’: Code Extracted from ChatGPT Response

Figure 3: ChatGPT Response for the Letter ’A’

to letters that are hard to generate. The details of the weighting
scheme are left to Taveekitworachai et al. [17] and are omitted from
these calculations for readability.

Measuring Stability: The stability test monitors a level for
ten seconds in Unity and assign a score based on the number of
blocks that fall. Equation 1 shows the stability of level 𝑥 as its
number of blocks total blocks minus the number of blocks that
change position moving blocks. Because the number of blocks is
likely to vary between levels, the stability score is this difference
normalized by total blocks. Levels score a stability of 1.0 when
moving blocks(𝑥) = 0 and stability of 0.0whenmoving blocks(𝑥) =
total blocks(𝑥).

stability(𝑥) = total blocks(𝑥) −moving blocks(𝑥)
total blocks(𝑥) (1)

Measuring Similarity: The similarity test takes an in-game
screenshot of a level ten seconds after loading it, the same amount
of time allotted for calculating stability. The screenshot is then
input to a fine-tuned Vision Transformer [2] trained to recognize
handwritten letters. 2. Activating the network on the image, the
similarity score is softmax probability output by the node corre-
sponding to the target letter. A similarity of 1.0 occurs when the
softmax probability outputs 1 for the target node and 0.0 for all
other output nodes. A similarity of 0.0 occurs when the softmax
probability outputs 0.0 for the target node.

Calculating Scores:
An individual level is assessed by multiplying its scores for sim-

ilarity and stability such that a similarity or stability score of 0
results in a 0 for the entire level:
2The model is available at https://huggingface.co/datasets/pittawat/letter_recognition
and is trained on data from https://www.nist.gov/srd/nist-special-database-19

https://chatgpt4pcg.github.io/2023/result
https://chatgpt4pcg.github.io/2023/files/prompts.zip
https://huggingface.co/datasets/pittawat/letter_recognition
https://www.nist.gov/srd/nist-special-database-19

FDG 2024, May 21–24, 2024, Worcester, MA, USA Arash Moradi Karkaj, Mark J. Nelson, Ioannis Koutis, and Amy K. Hoover

levelscore(𝑥) = stability(𝑥) × similarity(𝑥) (2)

A letter score is then the average level score of the levels gen-
erated for that target letter. Let 𝐴 represent the target letter and 𝑛
levels (i.e., 𝑥1, 𝑥2, ..., 𝑥𝑛) are generated, then the level score for 𝐴 is:

letterscore𝐴 (𝑥1, 𝑥2, ...𝑥𝑛) =
∑𝑖=𝑛
𝑖=1 levelscore(xi)

𝑛
(3)

Then prompt scores are the average score per target letter:

promptscore =
letterscore𝐴 + letterscore𝐵 + . . . + letterscore𝑍

26
(4)

3 EXPERIMENTS
Two sets of experiments are conducted. The replication experiment
examines whether the changes that OpenAI makes to ChatGPT-3.5
during the span of six months can have a significant impact on
prompt scores and whether any potential differences in scores can
be explained through the number of responses per target letter. For
the generalization experiment, original prompts are modified to re-
move instructions for specific letters, depending on generalization
setting. For the Zero-Shot setting, all examples are removed from
the original prompts. The One-Shot setting tests one-shot general-
ization from a single example letter. Only prompts that contain this
letter are tested for one-shot generalization, and the example letter
is varied from ’A’ to ’Z.’ The N-Shot setting looks at the performance
of only two prompts, but tests whether generalization improves
with the number of shots provided. All of the modified prompts
and the original prompts are available at gaimes-njit.github.io.

3.1 Replication Experiment
Replicating and reproducing research results is a cornerstone of
the scientific process [9], and our first step is to re-run the origi-
nal competition and analyze the replicability of the results. This
experiment first tests whether a sample size of 𝑛 = 10 ChatGPT
responses per letter per prompt (i.e., 260 responses in total) is large
enough to assess the quality of the prompts. To test this parameter
setting, the replication experiment runs the competition pipeline
for 𝑛 = 10 and for 𝑛 = 100, scoring and ranking prompts based on
a total of 260 and 2600 responses from ChatGPT respectively. If the
ranks and scores do not change significantly between 𝑛 = 10 and
𝑛 = 100, we can conclude that 𝑛 = 10 is sufficient.

In addition to the more narrow question of sample size, repli-
cating the competition results tests the entire pipeline: whether
ChatGPT produces the same responses now as it did a few months
ago, whether the scripts run the same in our computational en-
vironment as on the organizers’ machines, and so on. Section 4.1
presents the original results alongside our replicated results, and
analyzes each of these factors.

3.2 Generalization Experiment
The generalization experiment explores whether prompts can
generalize their level generation to create levels resembling un-
seen letters of the alphabet. The parameters varied are the example
letters provided in each prompt, and as a result, the amount of

generalization the LLM-based procedural content generator is ex-
pected to perform. These experiments are intended, in particular,
to tie the ChatGPT4PCG competition in more directly to discus-
sions around few-shot prompting in the LLM literature. To this
end, three settings for the generalization experiment are proposed:
Zero-Shot Generalization, One-Shot Generalization, and N-Shot
Generalization.

Zero-Shot Generalization tests generalization when prompts
explain how levels should be generated without referencing exam-
ple solutions. The original competition prompts are modified to
exclude any example instructions for letters. The zero-shot gener-
alization test is a strong test of generalization, and it is a common
way to test generalization in the LLM evaluation literature. In the
ChatGPT4PCG case, zero-shot prompting means building a prompt
that can include any amount of general discussion, but excludes
explicit drop sequences for any letters.

One-Shot Generalization is a common way to prompt LLMs
that are expected to generalize from one example solution. It is a
strong test of generalization, but weaker than the zero-shot setting
which is expected to generalize to other cases without an example
solution. In this experiment, 26 modified versions of all competition
entries are tested, one for each possible choice of one-shot letter. We
modified the original prompts to remove any explicit solutions other
than the one letter being tested each time. While some submissions
have an example for each of the letters (namely The Organizer and
dereventsolve), the rest include partial examples, so in some cases
this results in the modified prompts actually being zero-shot. In
those cases we excluded them from the results presentation.

N-Shot Generalization is based on the modified versions of
‘The Organizer’ and ‘Prompt_Wranglers’. This experiment varies
the number of examples (“shots”) given, from zero (as in the zero-
shot prompting experiment) all the way up to 26 (as in the top
two entries in the original competition). The experiment intends to
investigate generalization along a continuum from zero example
solutions provided in the prompt to all 26 example letters. The
experiment starts by removing all shots from the prompts, and
slowly reintroducing examples for the letter ‘A,’ then ‘A’ and ‘B’,
iteratively adding letters until all 26 shots are provided in each
prompt.

4 RESULTS
The results from the replication experiment show that the competi-
tion parameter corresponding to the number of responses collected
from ChatGPT is sufficient to rank prompts reliably. The results
from the generalization experiment show that generalization is still
an open problem.

4.1 Replication Results
The left side of Table 2 shows the ranking of scoring of competition
entries run for𝑛 = 10 and𝑛 = 100 in the replication experiment. The
prompt names are listed in themiddle and on the right are how these
prompts rank and score in the competition. The replication results
show similar scores and identical rankings for 𝑛 = 10 and 𝑛 = 100,
indicating that 𝑛 = 10 generates enough ChatGPT responses per
letter to account for the stochasticity of the domain.

gaimes-njit.github.io

Prompt Wrangling: On Replication and Generalization in Large Language Models for PCG Levels FDG 2024, May 21–24, 2024, Worcester, MA, USA

Table 2: Results from the Replication Experiment.

Replication Teams Competition
Rank n = 10 n = 100 Rank n=10

1 33.58 33.71 The Organizer 1 47.84
2 20.75 20.34 dereventsolve 2 31.15
3 14.34 14.06 Prompt_Wranglers 14 0.00
4 13.11 12.18 hachi 9 1.57
5 3.42 3.87 Soda 3 4.76
6 3.14 3.02 AdrienTeam 4 3.35
7 2.34 2.09 Harry Single Group 8 1.86
8 2.12 1.96 Back to the future 10 1.38
9 2.09 1.90 Saltyfish1884 5 2.12
10 1.88 1.62 zeilde 6 2.12
11 1.81 1.42 Team Staciiaz 7 1.96
12 1.21 0.88 JUSTIN 11 0.52
13 0.20 0.23 albatross 13 0.02
14 0.00 0.00 Hope 12 0.15
15 0.00 0.00 For500 15 0.00

Interestingly, there are significant differences in ranking between
the replication results and the results of the competition. ‘Soda’ and
‘AdrienTeam’ rank third and fourth in the competition but drop
to ranks five and six in the replication results. On the other hand,
‘Prompt_Wranglers’ increases from rank 14 to rank 3, and ‘hachi’
increases from rank 9 to 4.

Digging into individual prompts’ replication performance, Fig-
ure 4 indicates that while ‘Prompt_Wranglers’ and ‘hachi’ score
significantly better in the replication results than they did in the
competition, ‘The Organizer,’ ‘dereventsolve,’ ‘Soda,’ and ‘Adrien-
Team’ score more proportionately. Figure 5a shows the distribution
of scores for the replication results and the competition results
that includes the scores for ‘Prompt_Wranglers’ and ‘hachi’. These
replication results have higher interquartile ranges (IQRs) of 6.76
and 6.88 than that of the competition results with an IQR of 2.40.
Removing ‘Prompt_Wranglers’ and ‘hachi’ from the three distri-
butions in Figure 5b shows IQRs for the replication results (i.e.,
1.93 and 2.14 for 𝑛 = 10 and 𝑛 = 100) much closer to the IQR of
the competition, 2.83. These data suggest that the improvement
of ‘Prompt_Wranglers’ and ‘hachi’ is largely responsible for the
increased IQR in Figure 5a.

Given that 𝑛 = 10 is a large enough sample size to account for
stochasticty in the domain, the results suggest that the differences
in ranking are caused by a difference in the responses generated by
ChatGPT. In fact by generating level XML files from raw responses
rather (i.e., skipping the intermediate stage that extracts code from
the responses), ‘Prompt_Wranglers’ increases its score by 22.22
points. The code extraction step examines ChatGPT responses for
a set of triple backticks and exclusively extracts the code contained
between them. These triple backticks were absent in responses
from ChatGPT when collected for the competition, but present
in responses collected for the replication experiments. LLMs can
be sensitive to the exact wording in a prompt, and responses to a
prompt are likely to vary between LLMs and even between different
versions of the same LLM [14].

The Organizer

dereventsolve

Prompt_Wranglers

hachi
Soda

AdrienTeam

0

20

40

60

80

100

120
Competition n=10

Replication n=100

Replication n=10

(a)

Figure 4: Scores by prompt. The scores for the competition
and replication results for each prompt are stacked on top
of each other.

Table 3: Results from Zero-Shot Generalization.

Zero-Shot Teams Orig. Replication
Rank Raw Score Rank Raw Score

1 0.074 Soda 5 0.088
2 0.056 Team Staciiaz 11 0.043
3 0.054 Prompt_Wranglers 3 0.289
4 0.048 Harry Single Group 7 0.050
5 0.047 Saltyfish1884 9 0.052
6 0.046 Back to the future 8 0.050
7 0.038 zeilde 10 0.038
8 0.035 AdrienTeam 6 0.075
9 0.028 hachi 4 0.260
10 0.025 Hope 14 0.000
11 0.021 JUSTIN 12 0.034

=12 0.000 For500 15 0.000
=12 0.000 albatross 13 0.059
=12 0.000 dereventsolve 2 0.395
=12 0.000 The Organizer 1 0.605

Overall the results suggest that a sample size of 𝑛 = 10 responses
is sufficient to rank prompts reliably but caution that the results of
the competition and therefore quality of the prompts are largely
dependent on the specific LLM that is queried.

4.2 Generalization Results
Table 3 and Figures 6 and 7 show the results of the generalization
experiment. An important difference in scoring for the generaliza-
tion experiment results is that all reported scores are raw scores.
The competition’s scoring process includes two “dynamic” aspects
– weighting and normalization – that make scores incomparable

FDG 2024, May 21–24, 2024, Worcester, MA, USA Arash Moradi Karkaj, Mark J. Nelson, Ioannis Koutis, and Amy K. Hoover

Rep. (n=10) Rep. (n=100) Comp. (n=10)
0

10

20

30

40

50

Sc
or

es

(a) Score Distributions Including ‘Prompt_Wranglers’ and ‘hachi.’

Rep. (n=10) Rep. (n=100) Comp. (n=10)
0

10

20

30

40

50

Sc
or

es

(b) Score Distributions Excluding ‘Prompt_Wranglers’ and ‘hachi.’

Figure 5: Score Distributions for the Replication and Compe-
tition Results. For each distribution, the outliers are scores
for ‘The Organizer’ and ‘dereventsolve.’

across experiments (or different iterations of the competition). Per-
letter scores are weighted to give more weight to harder letters and
less weight to easier letters (easier/harder measured by how well
prompts do). The weighted scores are then normalized by dividing
each prompt’s score by the sum of all prompt scores andmultiplying
by 100, effectively making the final score a percentage (all scores in
the competition total to 100). To make scores comparable between
different experiments, a new metric called raw score is introduced.
It removes the dynamic aspects of the original competition: letters
are equally weighted, and there is no normalization (summarized
in Section 2.3).

Zero-Shot Generalization Results: When restricted to the
zero-shot setting, most prompts’ performance is reduced signifi-
cantly, as can be seen by comparing the two raw-score columns
in Table 3. The top-performing zero-shot prompt has performance

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
One-Shot Letter in Prompt

0.00

0.02

0.04

0.06

0.08

0.10

R
aw

 S
co

re

Team Names
The Organizer
dereventsolve
Prompt_Wranglers

hachi
Soda
AdrienTeam

Saltyfish1884
For500

Figure 6: Results of the One-Shot Generalization Experiment.
A subset of prompts include instructions for generating spe-
cific letters, and the performance for a prompt is shown only
for prompts that contain the given shot-letter.

0 5 10 15 20 25
Num. Shots in Prompt

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
aw

 S
co

re

The Organizer
Prompt_Wranglers

Figure 7: Results of the N-Shot Generalization Experiment.
The number of shots N ranges from 0 at the left to 26 at the
right. These experiments test two prompts: ‘The Organizer’
and ‘Prompt_Wranglers’.

only about 12% of the top-performing prompt in the original com-
petition (as replicated in our replication experiments). The rankings
are also quite different, suggesting some prompts that didn’t rank
highly in the original competition, such as ‘Soda’, may be on closer
to the right track nonetheless if our interest in is generalization.

Prompt Wrangling: On Replication and Generalization in Large Language Models for PCG Levels FDG 2024, May 21–24, 2024, Worcester, MA, USA

One-Shot Generalization Results: In the one-shot setting, the
best performing prompts improve up only slightly from the zero-
shot results, as shown in Figure 6. Raw scores remain significantly
below the scores seen for the best original prompts. However the
performance of some individual prompts does improve significantly
from the zero-shot setting. Overall performance varies quite a bit,
and in some cases is highly dependent on which single example
is given as the 1-shot example. For example, the single highest
performing 1-shot prompt is ‘hachi’ with ‘U’ given as the one shot;
‘hachi’ also stands out when given ‘T’. But this prompt doesn’t
perform exceptionally for any of the other 1-shot letters.

Overall prompts do not perform as well in the zero-shot or one-
shot setting as they do in the unrestricted competition. This result
suggests that strong generalization remains an open problem.

N-Shot Generalization Results: Figure 7 shows how perfor-
mance varies, for two starting prompts, when the number of “shots”
in the prompts varies from 0 (no explicit solution examples) to 26
(solution examples for all 26 letters). As expected, there is a general
trend of increasing performance with increasing shots: as additional
explicit solutions are given in the prompt, performance improves.
The relatively linear increases in performance also suggest that not
much generalization is going on: providing twice as many explicit
solutions approximately doubles performance.

5 DISCUSSION
Results of the experiments suggest that it is possible to design a
replicable competition by carefully selecting the LLM to query and
that in the ChatGPT4PCG competition, ChatGPT-3.5 is memorizing
from the examples provided in prompts rather than generalizing.
Redesigning prompt-based PCG competitions and investigating
prompt generalization are both rich areas for future work.

Figure 8 shows the scores calculated for 𝑛 = 100 responses per
letter per prompt. It separates the stability and similarity scores
for the competition entries with the weightings removed to reduce
ambiguity. While most prompts score around 80% or above in stabil-
ity score shown in the bottom chart, most prompts score between
zero and 20% in similarity. In fact there is a sense in which rank
differences are nearly entirely decided by similarity scores.

However the top-ranked prompt designed by the organizers
of the competition achieves only a 60% average similarity score.
One possible cause for the low similarity scores may be due to the
training data, which is a collection of handwritten letters. Figure 9
shows block letters clearly representing ’A’ and ’B,’ yet the softmax
probability of these target letters is 0.00 for ’A’ and 0.07 for ’B.’
These letters would both be classified as H with probability 0.99
and 0.81 percent chance. Similarly, the block letter G is assigned
a 0.40 chance of being an ’E’, 0.29 chance of ’Z’, 0.15 chance of I,
and 0.04 chance of F. While the letter ’C’ would be a reasonable
mistake, neither ’G’ nor ’C’ are recognized with any probability.
The classifier is similarly confused with ’X’, guessing 0.37 chance
of ’F’, 0.33 chance of ’H’, 0.09 ’Z’, 0.03 ’I’, and 0.02 ’K.’ Given the
chances of misclassification, score is likely largely impacted by the
quality of the classifier. Future work will address training a classifier
on a more appropriate dataset for the task.

Controllability is an attractive feature of any level generator,
and is in particular something the prompt-based PCG paradigm

0.0 0.2 0.4 0.6 0.8 1.0
For500

Hope
albatross

JUSTIN
Team Staciiaz

zeilde
Saltyfish1884

Back to the future
Harry Single Group

AdrienTeam
Soda
hachi

Prompt_Wranglers
dereventsolve
The Organizer

Mean Similarity

0.0 0.2 0.4 0.6 0.8 1.0
For500

Hope
albatross

JUSTIN
Team Staciiaz

zeilde
Saltyfish1884

Back to the future
Harry Single Group

AdrienTeam
Soda
hachi

Prompt_Wranglers
dereventsolve
The Organizer

Mean Stability

0.0

0.2

0.4

0.6

0.8

1.0

nu
m

be
r o

f s
uc

ce
ss

fu
l t

ria
ls

0.0

0.2

0.4

0.6

0.8

1.0

nu
m

be
r o

f s
uc

ce
ss

fu
l t

ria
ls

Figure 8: Mean scores for stability and similarity per team.

(a) (b) (c)

(d) (e) (f)

Figure 9: Block Letters: ‘A’, ‘B’, ‘G’, ‘Q’, ‘S’, ‘X’

should afford. While it may be the case that there are specific
prompting techniques to promote controllability [15, 18], state-
of-the-art approaches claims that users must be specific about the
exact number of game elements that they specify in the prompt
rather than communicating with the LLM more qualitatively. In a
sense the finding reduces the affordances of prompting to those of
parameterized PCG methodologies [4, 8]. A potential downside of
such a mapping to parameterized PCG is the impact of the diversity
of the level generation because the generator has explicit prompt to
include certain amounts of elements. While informal experiments
suggest that combining parameterization with more abstract and
not readily achievable evaluation criteria (e.g., level elevation [15]
or path length [18]) may guide users toward a balance between
controllability and diversity, a formal study is one direction for
future work.

FDG 2024, May 21–24, 2024, Worcester, MA, USA Arash Moradi Karkaj, Mark J. Nelson, Ioannis Koutis, and Amy K. Hoover

6 CONCLUSION
This paper takes a deep-dive into the ChatGPT4PCG competition
and explores whether the competition is replicable and whether
prompts are generalizing or simply giving to ChatGPT-3.5 a memo-
rization cheat-sheet. For the replication experiment, the competi-
tion code is run locally and six months after the competition was
held. While many prompts earn similar scores, two of the 15 ranked
entrants do considerably better in the replication experiment than
in the original competition. One reason for the improved perfor-
mance is the number of valid levels that could be generated and
scored. The ‘Prompt_Wranglers’ prompt was missing important
template information in ChatGPT-3.5 responses that led to generat-
ing invalid levels and a score of 0.00. This score was part of what
motivated the replication study.

In the generalization experiment, the number of example solu-
tions provided in the prompts is varied by analogy to the concept
of few-shot prompting in the LLM literature. The best-performing
prompt in the original competition included 26 explicit solutions,
which reduces level generation to selecting one of 26 prompt-
provided answers rather than generalizing to new, unseen problems.
When restricted to the few-shot setting, the prompts score lower
than they did in the competition.We conclude that generalization in
prompt-based PCG remains an open problem. One takeaway from
this study is that future prompt-based PCG experiments should be
designed to test generalization as a goal of the competition.

Finally, replicating results is problematic for a competition that
queries a public, closed-source LLMs such as ChatGPT: Many things
can change, and it is difficult to isolate variables. Our replication
experiments, despite reusing the competition scripts, found much
better performance with two of the fifteen non-disqualified prompts
that were submitted to the first ChatGPT4PCG competition, when
compared to the official results. Since one of these prompts was our
submission, we were able to analyze it in more detail and attempt
to understand reasons for the discrepancy. But we were unable
to similarly conclude with any confidence why the other prompt,
‘hachi’, scored much better in our replication than in the original
competition. Our suggestion is that that researchers using LLMs,
especially closed API-based LLMs, for prompt-based PCG research
may wish to save and document (at least in online supplemental
material) more details of the experiments than has been typical,
perhaps even erring on the side of pedantically hoarding all inputs
and outputs whatsoever. For example, if in addition to the prompts,
we had all ChatGPT responses as run at the time of the competition,
we would have been more easily able to compare original responses
to responses in our attempted replication.

REFERENCES
[1] ChatGPT4PCG. 2023. ChatGPT4PCG Resources. Accessed 2024-04-26.

https://chatgpt4pcg.github.io/2023/resources.
[2] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An Image is Worth 16x16Words: Transformers
for Image Recognition at Scale. arXiv preprint arXiv:2010.11929 (2020).

[3] Lucas Ferreira and Claudio Fabiano Motta Toledo. 2014. A search-based approach
for generating Angry Birds levels. In 2014 IEEE Conference on Computational
Intelligence and Games. https://doi.org/10.1109/CIG.2014.6932912

[4] Britton Horn, Steve Dahlskog, Noor Shaker, Gillian Smith, and Julian Togelius.
2014. A comparative evaluation of procedural level generators in the Mario AI
framework. In Proceedings of the Foundations of Digital Games. Society for the
Advancement of the Science of Digital Games.

[5] Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez,
Jade Copet, Devi Parikh, Yaniv Taigman, and Yossi Adi. 2023. AudioGen: Textually
Guided Audio Generation. In The Eleventh International Conference on Learning
Representations, ICLR 2023. OpenReview.net. https://openreview.net/pdf?id=
CYK7RfcOzQ4

[6] Robert Tjarko Lange, Yingtao Tian, and Yujin Tang. 2024. Large Language Models
As Evolution Strategies. arXiv preprint arXiv:2402.18381 (2024).

[7] Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam Gaier, Arash Moradi,
Amy K Hoover, and Joel Lehman. 2023. Language Model Crossover: Variation
through Few-Shot Prompting. arXiv preprint arXiv:2302.12170 (2023).

[8] Arash Moradi Karkaj and Shahriar Lotfi. 2022. Using estimation of distribution al-
gorithm for procedural content generation in video games. Genetic Programming
and Evolvable Machines 23, 4 (2022), 495–533.

[9] National Academies of Sciences, Engineering, and Medicine. 2019. Reproducibility
and Replicability in Science. The National Academies Press.

[10] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023). https:
//doi.org/10.48550/ARXIV.2303.08774 arXiv:2303.08774

[11] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
2022. Hierarchical Text-Conditional Image Generation with CLIP Latents.
CoRR abs/2204.06125 (2022). https://doi.org/10.48550/ARXIV.2204.06125
arXiv:2204.06125

[12] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn
Ommer. 2022. High-Resolution Image Synthesis with Latent Diffusion Models.
In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE Computer Society, 10674–10685.

[13] Téo Sanchez. 2023. Examining the Text-to-Image Community of Practice: Why
and How do People Prompt Generative AIs?. In Proceedings of the Conference on
Creativity and Cognition. 43–61.

[14] Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. 2023. Quantify-
ing Language Models’ Sensitivity to Spurious Features in Prompt Design or:
How I learned to start worrying about prompt formatting. arXiv preprint
arXiv:2310.11324 (2023).

[15] Shyam Sudhakaran, Miguel González-Duque, Claire Glanois, Matthias Freiberger,
Elias Najarro, and Sebastian Risi. 2023. MarioGPT: Open-Ended Text2Level
Generation through Large Language Models. In Proceedings of NeurIPS 2023.

[16] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård,
Amy K Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. 2018. Proce-
dural content generation via machine learning (PCGML). IEEE Transactions on
Games 10, 3 (2018), 257–270.

[17] Pittawat Taveekitworachai, Febri Abdullah, Mury F Dewantoro, Ruck Tha-
wonmas, Julian Togelius, and Jochen Renz. 2023. ChatGPT4PCG competition:
character-like level generation for science birds. In Proceedings of the 2023 IEEE
Conference on Games.

[18] Graham Todd, Sam Earle, Muhammad Umair Nasir, Michael Cerny Green,
and Julian Togelius. 2023. Level Generation Through Large Language Mod-
els. CoRR abs/2302.05817 (2023). https://doi.org/10.48550/arXiv.2302.05817
arXiv:2302.05817

[19] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-Thought Prompting Elicits Rea-
soning in Large Language Models. Advances in Neural Information Processing
Systems 35 (2022), 24824–24837.

[20] Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jeff Gray, Alejandra Molina,
Michael Terry, and Carrie J Cai. 2022. Promptchainer: Chaining large language
model prompts through visual programming. In CHI Conference on Human Factors
in Computing Systems Extended Abstracts. 1–10.

[21] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou,
and Xinyun Chen. 2023. Large Language Models as Optimizers. arXiv preprint
arXiv:2309.03409 (2023).

https://doi.org/10.1109/CIG.2014.6932912
https://openreview.net/pdf?id=CYK7RfcOzQ4
https://openreview.net/pdf?id=CYK7RfcOzQ4
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/ARXIV.2204.06125
https://arxiv.org/abs/2204.06125
https://doi.org/10.48550/arXiv.2302.05817
https://arxiv.org/abs/2302.05817

	Abstract
	1 Introduction
	2 The ChatGPT4PCG Competition
	2.1 Prompt Qualification
	2.2 Level Generation
	2.3 Level Evaluation

	3 Experiments
	3.1 Replication Experiment
	3.2 Generalization Experiment

	4 Results
	4.1 Replication Results
	4.2 Generalization Results

	5 Discussion
	6 Conclusion
	References

